Document Type
Article
Version Deposited
Submitted for publication (PrePrint)
Publication Date
2022
Publication Title
BioXRiv
Abstract
Vascular morphogenesis requires persistent endothelial cell motility that is responsive to diverse and dynamic mechanical stimuli. Here, we interrogated the mechanotransductive feedback dynamics that govern endothelial cell motility and vascular morphogenesis. We show that the transcriptional regulators, YAP and TAZ, are activated by mechanical cues to transcriptionally limit cytoskeletal and focal adhesion maturation, forming a conserved mechanotransductive feedback loop that mediates human endothelial cell motility in vitro and zebrafish intersegmental vessel (ISV) morphogenesis in vivo. This feedback loop closes in 4 hours, achieving cytoskeletal equilibrium in 8 hours. Feedback loop inhibition arrested endothelial cell migration in vitro and ISV morphogenesis in vivo. Inhibitor washout at 3 hrs, prior to feedback loop closure, restored vessel growth, but washout at 8 hours, longer than the feedback timescale, did not, establishing lower and upper bounds for feedback kinetics in vivo. Mechanistically, YAP and TAZ induced transcriptional suppression of myosin II activity to maintain dynamic cytoskeletal equilibria. Together, these data establish the mechanoresponsive dynamics of a transcriptional feedback loop necessary for persistent endothelial cell migration and vascular morphogenesis.
Recommended Citation
Mason, Devon E.; Goeckel, Megan; Vega, Sebastian; Wu, Pei-Hsun; Johnson, Dymonn; Heo, Su-Jin; Wirtz, Denis; Burdick, Jason A.; Wood, Levi; Chow, Brian Y.; Stratman, Amber N.; and Boerckel, Joel D., "Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis" (2022). Henry M. Rowan College of Engineering Departmental Research. 184.
https://rdw.rowan.edu/engineering_facpub/184
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comments
bioRxiv preprint doi: https://doi.org/10.1101/2022.06.15.496293; this version posted June 16, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.