Document Type

Article

Version Deposited

Published Version

Publication Date

10-20-2024

Publication Title

Energies

DOI

10.3390/en17205211

Abstract

This paper investigates a Local Strategy-Driven Multi-Agent Deep Deterministic Policy Gradient (LSD-MADDPG) method for demand-side energy management systems (EMS) in smart communities. LSD-MADDPG modifies the conventional MADDPG framework by limiting data sharing during centralized training to only discretized strategic information. During execution, it relies solely on local information, eliminating post-training data exchange. This approach addresses critical challenges commonly faced by EMS solutions serving dynamic, increasing-scale communities, such as communication delays, single-point failures, scalability, and nonstationary environments. By leveraging and sharing only strategic information among agents, LSD-MADDPG optimizes decision-making while enhancing training efficiency and safeguarding data privacy—a critical concern in the community EMS. The proposed LSD-MADDPG has proven to be capable of reducing energy costs and flattening the community demand curve by coordinating indoor temperature control and electric vehicle charging schedules across multiple buildings. Comparative case studies reveal that LSD-MADDPG excels in both cooperative and competitive settings by ensuring fair alignment between individual buildings’ energy management actions and community-wide goals, highlighting its potential for advancing future smart community energy management.

Comments

© 2024 by the authors. Licensee MDPI, Basel, Switzerland.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS