Date Approved


Embargo Period


Document Type


Degree Name

M.S. Civil Engineering


Civil and Environmental Engineering


Henry M. Rowan College of Engineering


Mehta, Yusuf

Committee Member 1

Lomboy, Gilson

Committee Member 2

Cleary, Douglas


Balanced Mix Design, Cold In-Place Recycling, Cracking, Performance Testing, Rutting


Pavements, Asphalt--Recycling


Civil and Environmental Engineering | Materials Science and Engineering


The objective of this research study is to present a procedure for designing Cold In-Place Recycling (CIR) mixtures through balancing cracking and rutting for these mixtures. Eight CIR mixtures were prepared using two recycling agents (foamed and emulsified asphalts), then cured for three days at two temperatures (140oF and 50oF), and compacted at two gyration levels (30 and 70 gyrations). The CIR mixtures were prepared at constant dosages of water and cement, 3% and 1%, respectively. Air void of each CIR performance test specimen was determined using the CoreLok device. The rutting susceptibility of these mixtures was then evaluated using the Asphalt Pavement Analyzer (APA) and Dynamic Complex Modulus (|E*|) while resistance to cracking was evaluated using the Indirect Tensile Strength (ITS) test and Fracture Energy was determined using the Semi-Circular Bend (SCB-FE) test. The developed balanced mix design approach was used successfully in selecting the optimum binder content for each CIR mixture. Experimental and statistical evaluations were also conducted on CIR mixtures prepared with optimum binder contents. The results showed that using a higher compaction level or higher temperature of curing leads to increasing both foamed and emulsified asphalt CIR mixtures' ability to resist rutting. In terms of cracking, SCB-FE results showed that emulsified asphalt CIR mixtures were better at resisting cracking than foamed asphalt CIR mixtures.