Date Approved


Embargo Period


Document Type


Degree Name

Ph.D. Doctor of Philosophy


Biomedical Engineering


Henry M. Rowan College of Engineering


Peter A. Galie, Ph.D.

Committee Member 1

Erik C. Brewer, Ph.D.

Committee Member 2

Paul A. Janmey, Ph.D.

Committee Member 3

Alan Turtz, M.D.

Committee Member 4

Sebastian L. Vega, Ph.D.


3D-printing, Angiogenesis, Magnetism, Spinal cord injury, Tissue engineering, Vascularized scaffolds


Tissue scaffolds; Spinal cord--Wounds and injuries


Biomedical Engineering and Bioengineering


Scaffolds delivered to injured spinal cords to stimulate axon connectivity often act as a bridge to stimulate regeneration at the injured area, but current approaches lack the permissiveness, topology and mechanics to mimic host tissue properties. This dissertation focuses on bioengineering scaffolds through the means of altering topology in injectables and tuning mechanics in 3D-printed constructs as potential therapies for spinal cord injury repair. A self-assembling peptide scaffold, RADA-16I, is used due to its established permissiveness to axon growth and ability to support vascularization. Immunohistochemistry assays verify that vascularized peptide scaffolds promote axon infiltration, attenuate inflammation and reduce astrogliosis. Furthermore, magnetically-responsive (MR) RADA-16I injections are patterned along the rostral-caudal direction in both in-vitro and in-vivo conditions. ELISA and histochemical assays validate the efficacy of MR hydrogels to promote and align axon infiltration at the site of injury. In addition to injectable scaffolds, this thesis uses digital light processing (DLP) to mimic the mechanical heterogeneity of the spinal cord caused by white and gray matter, and demonstrate that doing so improves axon infiltration into the scaffold compared to controls exhibiting homogeneous mechanical properties. Taken together, this work contributes to advancing the field of tissue engineering and regenerative medicine by demonstrating the potential of bioengineered scaffolds to repair the damaged spinal cord.