Document Type

Article

Version Deposited

Published Version

Publication Date

5-8-2018

Publication Title

Oxidative Medicine & Cellular Longevity

DOI

10.1155/2018/4701275

Abstract

Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, it lowers cellular ROS thereby restoring cellular homeostasis. However, if cellular homeostasis cannot be reached, the cells can switch back and choose a regulated cell death response. Intriguingly, the autophagic and cell death machines both respond to the same stresses and share key regulatory proteins, suggesting that the pathways are intricately connected. Here, the intersection between autophagy and apoptosis is discussed with a particular focus on the role ROS plays.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS