Date of Presentation
5-4-2023 12:00 AM
College
School of Osteopathic Medicine
Poster Abstract
Vape-pens or electronic cigarettes (e-cigarettes) are handheld battery powered devices that use a vape-liquid to produce a vapor that is inhaled by the user. The active ingredients in commercial vape-liquids are commonly nicotine, tetrahydrocannabinol or cannabidiol. A consequence of the rise in e-cigarette usage was the 2019 emergence of a vaping-induced respiratory disease denoted ‘e-cigarette or vaping use-associated lung injury’ (EVALI). One of the suspected causes of EVALI is Vitamin E Acetate (VEA), which was found to be a diluent in certain illicit tetrahydrocannabinol vape-pens, whereas nicotine is commonly diluted in equal parts propylene glycol and vegetable glycerin (PG:VG). The prevalent use of e-cigarettes by both adult and young adult populations and the emergence of a novel illness has made understanding how e-cigarette vapors affect our respiratory tissues a public health concern. We have designed and produced a simple device that can operate commercial e-cigarettes and deliver the vapor to a chamber containing a standard cell culture multi-well plate. Here we utilize our device to investigate how human airway mucociliary tissue cultures respond after chronic exposure to vapors produced from either PG:VG or VEA. We note several differences between how PG:VG and VEA vapors interact with and alter airway tissue cultures and suggest potential mechanisms for how VEA-vapors can exacerbate EVALI symptoms. Our device combined with primary human airway tissue cultures make an economical and compact model system that allows for animal-free investigations into the acute and chronic consequences of e-cigarette vapors on primary respiratory cells.
Keywords
E-Cigarette Vapor, Electronic Nicotine Delivery Systems, Vaping, Electronic Cigarette Use, Lung Injury, E-Cigarette Use-Associated Lung Injury, E-Cigarette or Vaping Product Use-Associated Lung Injury, EVALI, Respiratory Physiological Phenomena, Vitamin E Acetate
Disciplines
Community Health and Preventive Medicine | Epidemiology | Equipment and Supplies | Investigative Techniques | Medical Cell Biology | Medical Physiology | Medicine and Health Sciences | Pathological Conditions, Signs and Symptoms | Public Health Education and Promotion | Respiratory Tract Diseases
Document Type
Poster
Included in
Community Health and Preventive Medicine Commons, Epidemiology Commons, Equipment and Supplies Commons, Investigative Techniques Commons, Medical Cell Biology Commons, Medical Physiology Commons, Pathological Conditions, Signs and Symptoms Commons, Public Health Education and Promotion Commons, Respiratory Tract Diseases Commons
Human Airway Mucociliary Tissue Cultures Chronically Exposed to E-Cigarette Vapors Exhibit Altered Cell Populations and Increased Secretion of Immunomodulatory Cytokines
Vape-pens or electronic cigarettes (e-cigarettes) are handheld battery powered devices that use a vape-liquid to produce a vapor that is inhaled by the user. The active ingredients in commercial vape-liquids are commonly nicotine, tetrahydrocannabinol or cannabidiol. A consequence of the rise in e-cigarette usage was the 2019 emergence of a vaping-induced respiratory disease denoted ‘e-cigarette or vaping use-associated lung injury’ (EVALI). One of the suspected causes of EVALI is Vitamin E Acetate (VEA), which was found to be a diluent in certain illicit tetrahydrocannabinol vape-pens, whereas nicotine is commonly diluted in equal parts propylene glycol and vegetable glycerin (PG:VG). The prevalent use of e-cigarettes by both adult and young adult populations and the emergence of a novel illness has made understanding how e-cigarette vapors affect our respiratory tissues a public health concern. We have designed and produced a simple device that can operate commercial e-cigarettes and deliver the vapor to a chamber containing a standard cell culture multi-well plate. Here we utilize our device to investigate how human airway mucociliary tissue cultures respond after chronic exposure to vapors produced from either PG:VG or VEA. We note several differences between how PG:VG and VEA vapors interact with and alter airway tissue cultures and suggest potential mechanisms for how VEA-vapors can exacerbate EVALI symptoms. Our device combined with primary human airway tissue cultures make an economical and compact model system that allows for animal-free investigations into the acute and chronic consequences of e-cigarette vapors on primary respiratory cells.