Document Type
Article
Version Deposited
Published Version
Publication Date
8-28-2018
Publication Title
Evolution
DOI
10.1111/evo.13586
Abstract
Viral gain‐of‐function mutations frequently evolve during laboratory experiments. Whether the specific mutations that evolve in the lab also evolve in nature and whether they have the same impact on evolution in the real world is unknown. We studied a model virus, bacteriophage λ, that repeatedly evolves to exploit a new host receptor under typical laboratory conditions. Here, we demonstrate that two residues of λ’s J protein are required for the new function. In natural λ variants, these amino acid sites are highly diverse and evolve at high rates. Insertions and deletions at these locations are associated with phylogenetic patterns indicative of ecological diversification. Our results show that viral evolution in the laboratory mirrors that in nature and that laboratory experiments can be coupled with protein sequence analyses to identify the causes of viral evolution in the real world. Furthermore, our results provide evidence for widespread host‐shift evolution in lambdoid viruses.
Recommended Citation
Maddamsetti, R., Johnson, D.T., Spielman, S.J., Petrie, K.L., Marks, D.S. and Meyer, J.R. (2018). Gain‐of‐function experiments with bacteriophage lambda uncover residues under diversifying selection in nature. Evolution, 72: 2234-2243. doi:10.1111/evo.13586
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Comments
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.