Document Type
Article
Version Deposited
Published Version
Publication Date
8-2-2021
Publication Title
Chemistry: A European Journal
DOI
10.1002/chem.202101201
Abstract
The alkylation of some secondary amide functions with a dimethoxybenzyl (DMB) group in oligomers of 8-amino-2-quinolinecarboxylic acid destabilizes the otherwise favored helical conformations, and allows for cyclization to take place. A cyclic hexamer and a cyclic heptamer were produced in this manner. After DMB removal, X-ray crystallography and NMR show that the macrocycles adopt strained conformations that would be improbable in noncyclic species. The high helix folding propensity of the main chain is partly expressed in these conformations, but it remains frustrated by macrocyclization. Despite being homomeric, the macrocycles possess inequivalent monomer units. Experimental and computational studies highlight specific fluxional pathways within these structures. Extensive simulated annealing molecular dynamics allow for the prediction of the conformations for larger macrocycles with up to sixteen monomers.
Recommended Citation
Urushibara K, Ferrand Y, Liu Z, Katagiri K, Kawahata M, Morvan E, D'Elia R, Pophristic V, Tanatani A, Huc I. Accessing Improbable Foldamer Shapes with Strained Macrocycles. Chemistry. 2021 Aug 2; 27(43):11205-11215. doi: 10.1002/chem.202101201. Epub 2021 May 27.
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Comments
© 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.