Date Approved
6-5-2017
Embargo Period
6-5-2017
Document Type
Thesis
Degree Name
MS Computer Science
Department
Computer Science
College
College of Science & Mathematics
Advisor
Baliga, Ganesh R.
Committee Member 1
Lobo, Andrea F.
Committee Member 2
Tinkham, Nancy L.
Keywords
competition, data analysis, data processing, PHM, prognostics, remaining useful life
Subject(s)
Reliability (Engineering); Neural networks (Computer science)
Disciplines
Computer Sciences | Operations Research, Systems Engineering and Industrial Engineering
Abstract
In the field of engineering, it is important to understand different engineering systems and components, not only in how they currently perform, but also how their performance degrades over time. This extends to the field of prognostics, which attempts to predict the future of a system or component based on its past and present states. A common problem in this field is the estimation of remaining useful life, or how long a system or component functionality will last. The well-known datasets for this problem are the PHM and C-MAPSS datasets. These datasets contain simulated sensor data for different turbofan engines generated over time, and have been used to study estimations of remaining useful life.
In this thesis, we study estimations of remaining useful life using different methods of data analytics, preprocessing, post-processing, different target functions used for training models, and their combinations. We compared their performance primarily using scores from the 2008 Prognostics and Health Management Competition. Our basic feedforward neural network outperforms previously competitors and other modern methods. Our results also gave us a ranking between the top 10 and 15 based on a 2014 benchmark. We have improved on the results of previously, published methods, primarily focusing on the Prognostics Health Management competition score of our results for better comparisons.
Recommended Citation
Bucknam, John Scott, "Data analysis and processing techniques for remaining useful life estimations" (2017). Theses and Dissertations. 2430.
https://rdw.rowan.edu/etd/2430
Included in
Computer Sciences Commons, Operations Research, Systems Engineering and Industrial Engineering Commons