Date Approved
5-6-2019
Embargo Period
5-7-2019
Document Type
Thesis
Degree Name
MS Computer Science
Department
Computer Science
College
College of Science & Mathematics
Advisor
Hnatyshyn, Serhiy Y.
Committee Member 1
Hnatyshin, Vasil
Committee Member 2
Thayasivam, Uma
Keywords
algorithm, deconvolution, preprocessing, spectroscopy, wavelet
Subject(s)
Computer algorithms; Chemistry--Analytic
Disciplines
Chemistry | Computer Sciences
Abstract
The huge amount of spectroscopic data in use in metabolomic experiments requires an algorithm that can process the data in an autonomous fashion while providing quality of analysis comparable to manual methods. Scientists need an algorithm that effectively deconvolutes spectroscopic peaks automatically and is resilient to the presence of noise in the data. The algorithm must also provide a simple measure of quality of the deconvolution. The deconvolution algorithm presented in this thesis consists of preprocessing steps, noise removal, peak detection, and function fitting. Both a Fourier Transform and Continuous Wavelet Transform (CWT) method of noise removal were investigated. The performance of the automated algorithm was compared with the manual approach. The tests were conducted using data partitioned into categories based on the amount of noise and peak types. The CWT is shown to be an adequate method for estimating the locations of peaks in chromatographic data. An implementation was provided in Microsoft Visual C# with .NET 5.0.
Recommended Citation
Burke, William Johan IV, "A robust and automated deconvolution algorithm of peaks in spectroscopic data" (2019). Theses and Dissertations. 2657.
https://rdw.rowan.edu/etd/2657