Date Approved


Embargo Period


Document Type


Degree Name

M.S. Pharmaceutical Sciences


Chemistry and Biochemistry


College of Science & Mathematics


Perez, Lark

Committee Member 1

Caputo, Gregory

Committee Member 2

Jonnalagadda, Subash


Biofilm Inhibition, Drug Delivery, Nanoparticles, Pseudomonas Aeruginosa


Drug resistance in microorganisms; Bacteria


Medicinal and Pharmaceutical Chemistry | Pharmacy and Pharmaceutical Sciences


Widespread usage of antibiotics is a growing concern due to antibiotic resistance development in bacteria. This is due to common use of antibiotics in agricultural, livestock, and clinical usage. Antibiotic resistance is developing at a rate in which it is outpacing new drugs on the market. New strategies in drug development are necessary to combat the increasing resistance. We designed several motifs of sugar-modified nanoparticles to inhibit the biofilm formation of Pseudomonas aeruginosa.

P. aeruginosa is an opportunistic pathogenic bacterium that is responsible for common life-threatening infection in hospitals. This gram-negative opportunistic pathogenic bacterium infects hosts with compromised immune systems and contributes to complications in patients suffering from pneumonia, cystic fibrosis, and other immune compromising conditions. Biofilm formation from P. aeruginosa is used as an attack mechanism and adds to antibiotic resistance. Regulation of biofilms are performed by quorum sensing.

P. aeruginosa lectins, LecA and LecB, are two sugar-binding proteins distinct in structure, binding preference and involvement of biofilm formation in this pathogen. Lectins, LecA and LecB, are specific to D-Galactose, and L-Fucose, respectively. Modifying the surface of our NP with the lectin-specific sugars achieves lectin binding selectivity, where nanoparticles are specific only to the targeted lectin. Modifying the surface of nanoparticles with these specific sugars provides a unique opportunity to not only bind selectively to P. aeruginosa, but also inhibit biofilm formation by disrupting colonization of the bacterium. Nanoparticles may also allow for antibiotic encapsulation, which could lead to pathogen specific use of antibiotics.