Date Approved
8-27-2020
Embargo Period
8-28-2020
Document Type
Thesis
Degree Name
M.S. Mechanical Engineering
Department
Mechanical Engineering
College
Henry M. Rowan College of Engineering
Advisor
Miri, Amir K.
Committee Member 1
Thompson, Gary L.
Committee Member 2
Alpaugh, Mary
Keywords
Bioprinting, DLP Printing, glioblastoma, Microfluidics, organ-on-chip
Subject(s)
Additive manufacturing; Brain--Tumors
Disciplines
Biomedical Engineering and Bioengineering | Mechanical Engineering
Abstract
Glioblastoma multiform (GBM) is one of the most aggressive forms of primary brain tumors. GBM is fast progressing and resistant to treatment, resulting in a low survival rate. Conventional 2-dimensional tissue culture models cannot fully replicate the complexities of cancer lesions that contain multiple cell types and structures (e.g. vessels composed of endothelial cells, cancer cells, normal cells, etc.) as well as an intricate scaffold of proteins comprising the extracellular matrix (ECM). In addition, animal models cannot translate into the clinical disease in patients. Thus, this study has developed a bioprintable organ-on-a-chip (OOAC) model that mimics the important ECM factors of the GBM tumor microenvironment to study GBM invasive migration in vitro. Gelatin methacrylol (GelMA), endothelial cell (HUVEC) lined channels, human GBM cells (U87) and hyaluronic acid (HA) were selected to create bioinks to print the OOAC. 5-7% (w/v). GelMA with variable levels of HA was found to be mechanically comparable to native ECM of the brain. Different bioink combinations were explored to match the Young's modulus of common GBM tumors found in literature. Spreading of endothelial cells in a microfluidic channel were observed with a monoculture OOAC, and a viable bioink composition and culture method were developed to support co-culture in the OOAC. Our diseased tissue model can replicate the GBM ECM and can allow for multi-cell culture migration studies in the future.
Recommended Citation
Schwartz, Rachel Lauren, "Bioprinted in vitro model of human glioblastoma" (2020). Theses and Dissertations. 2837.
https://rdw.rowan.edu/etd/2837