Date Approved
9-8-2020
Embargo Period
9-9-2020
Document Type
Thesis
Degree Name
M.S. Bioinformatics
Department
Molecular and Cellular Biosciences
College
College of Science & Mathematics
Advisor
Wu, Chun
Committee Member 1
Keck, Thomas
Committee Member 2
Chen, Yong
Keywords
binding, drug development, Markov, model, MSM, states
Subject(s)
Computational biochemistry; Drug development
Disciplines
Bioinformatics
Abstract
Markov State Models (MSMs) are constructed from Molecular Dynamics (MD) simulation data, high-resolution spatial and temporal information stored in the form of trajectories, of biological processes, such as ligand-receptor bonding, as a model to understand detailed kinetic information. Traditional MSM implementations involve a clustering step that clusters the MD trajectories into thousands of experimentally unverifiable clusters known as "microstates" before lumping them together into "macrostates". This work details a novel software implementation, using a combination of R, Python, and Tcl, that I have created for the purpose of creating a coarse-grained MSM that directly clusters the MD trajectories into a handful of experimentally verifiable clusters while maintaining the Markovian property. The coarse-grained MSM implementation was designed to require minimal technical experience while still being robust enough for usage in studying a variety of biological processes. In addition, this coarse-grained MSM implementation has already been used as part of several works to explore the binding mechanisms of various ligand-receptor complexes that have shown potential in the treatment of neurodegenerative diseases and various cancers.
Recommended Citation
Chen, Brian, "Development and implementation of a coarse-grained Markov State Model" (2020). Theses and Dissertations. 2839.
https://rdw.rowan.edu/etd/2839