Date Approved
9-22-2020
Embargo Period
9-22-2020
Document Type
Thesis
Degree Name
M.S. Chemical Engineering
Department
Chemical Engineering
College
Henry M. Rowan College of Engineering
Sponsor
Army Research Laboratory
Advisor
Stanzione, Joseph F.
Committee Member 1
Haas, Francis M.
Committee Member 2
Dahm, Kevin D.
Keywords
Bio-based, Copolymers, Dual-functional monomers, Epoxy-functional thermoplastics, Glycidyl methacrylate, Interpenetrating polymer networks
Subject(s)
Polymerization; Thermoplastics
Disciplines
Chemical Engineering
Abstract
While polymers have secured a place in the consumer, industrial, and military markets over the last seventy years, the next generation of polymers must become more renewable, more adaptive, and higher performing to bridge industrial needs and environmental gaps. To this end, unique network configurations of copolymers and interpenetrating polymer networks (IPNs) have been employed to combine features of two or more polymers into a single material that surpasses the sum of its parts. The customization of polymer networks can be made possible via dual-functional monomers, molecules characterized by two different reactive substituents that allow for versatile methods of polymerization. This thesis expands the applications of such materials by investigating bio-based, aromatic, dual-functional monomers, vanillyl alcohol epoxy-methacrylate (VAEM) and gastrodigenin epoxy-methacrylate (GDEM), as alternatives to glycidyl methacrylate (GMA) in thermoplastic copolymers with methyl methacrylate (MMA). Additionally, low molecular weight epoxy-functional thermoplastic copolymers poly(VAEM-co-MMA) and poly(GMA-co-MMA) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization, blended at 5 wt% into an epoxy resin system containing EPON® Resin 828 and EPIKURE(TM) W Curing Agent, and cured thermally. The resulting IPNs were compared to the neat resin and evaluated for thermal and mechanical properties, where maintained thermal properties and marginal enhancements of stiffness and toughness were demonstrated.
Recommended Citation
Sweet, Kayla Rose, "Epoxy-functional thermoplastic copolymers and their incorporation into thermosetting resins" (2020). Theses and Dissertations. 2843.
https://rdw.rowan.edu/etd/2843