Document Type

Article

Version Deposited

Published Version

Publication Date

4-18-2018

Publication Title

BMC Microbiology

DOI

10.1186/s12866-018-1180-1

Abstract

BACKGROUND: An issue associated with efficient bioethanol production is the fact that the desired product is toxic to the biocatalyst. Among other effects, ethanol has previously been found to influence the membrane of E. coli in a dose-dependent manner and induce changes in the lipid composition of the plasma membrane. We describe here the characterization of a collection of ethanol-tolerant strains derived from the ethanologenic Escherichia coli strain FBR5.

RESULTS: Membrane permeability assays indicate that many of the strains in the collection have alterations in membrane permeability and/or responsiveness of the membrane to environmental changes such as temperature shifts or ethanol exposure. However, analysis of the strains by gas chromatography and mass spectrometry revealed no qualitative changes in the acyl chain composition of membrane lipids in response to ethanol or temperature. To determine whether these strains contain any mutations that might contribute to ethanol tolerance or changes in membrane permeability, we sequenced the entire genome of each strain. Unexpectedly, none of the strains displayed mutations in genes known to control membrane lipid synthesis, and a few strains carried no mutations at all. Interestingly, we found that four independently-isolated strains acquired an identical C → A (V244 V) silent mutation in the ferric citrate transporter gene fecA. Further, we demonstrated that either a deletion of fecA or over-expression of fecA can confer increased ethanol survival, suggesting that any misregulation of fecA expression affects the cellular response to ethanol.

CONCLUSIONS: The fact that no mutations were observed in several ethanol-tolerant strains suggested that epigenetic mechanisms play a role in E. coli ethanol tolerance and membrane permeability. Our data also represent the first direct phenotypic evidence that the fecA gene plays a role in ethanol tolerance. We propose that the recurring silent mutation may exert an effect on phenotype by altering RNA-mediated regulation of fecA expression.

Comments

Publication of this Open Access article was supported by the Rowan University Libraries Open Access Publishing Fund.

Copyright 2018 by The Authors. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Published Citation

Lupino, K. M., Romano, K. A., Simons, M. J., Gregg, J. T., Panepinto, L., Cruz, G. M., ...Hecht, G. B. (2018). A recurrent silent mutation implicates fecA in ethanol tolerance by Escherichia coli. BMC Microbiology 18(1):36.

Included in

Microbiology Commons

Share

COinS