Document Type
Article
Version Deposited
Published Version
Publication Date
2-16-2023
Publication Title
International Journal of Molecular Sciences
DOI
10.3390/ijms24043975
Abstract
Biopolymers are an emerging class of novel materials with diverse applications and properties such as superior sustainability and tunability. Here, applications of biopolymers are described in the context of energy storage devices, namely lithium-based batteries, zinc-based batteries, and capacitors. Current demand for energy storage technologies calls for improved energy density, preserved performance overtime, and more sustainable end-of-life behavior. Lithium-based and zinc-based batteries often face anode corrosion from processes such as dendrite formation. Capacitors typically struggle with achieving functional energy density caused by an inability to efficiently charge and discharge. Both classes of energy storage need to be packaged with sustainable materials due to their potential leakages of toxic metals. In this review paper, recent progress in energy applications is described for biocompatible polymers such as silk, keratin, collagen, chitosan, cellulose, and agarose. Fabrication techniques are described for various components of the battery/capacitors including the electrode, electrolyte, and separators with biopolymers. Of these methods, incorporating the porosity found within various biopolymers is commonly used to maximize ion transport in the electrolyte and prevent dendrite formations in lithium-based, zinc-based batteries, and capacitors. Overall, integrating biopolymers in energy storage solutions poses a promising alternative that can theoretically match traditional energy sources while eliminating harmful consequences to the environment.
Recommended Citation
Dalwadi, S.; Goel, A.; Kapetanakis, C.; Salas-de la Cruz, D.; Hu, X. The Integration of Biopolymer-Based Materials for Energy Storage Applications: A Review. Int. J. Mol. Sci. 2023, 24, 3975. https://doi.org/10.3390/ijms24043975
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comments
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.