Date Approved
12-21-2020
Embargo Period
1-4-2021
Document Type
Thesis
Degree Name
M.S. Mechanical Engineering
Department
Mechanical Engineering
College
Henry M. Rowan College of Engineering
Advisor
Bakrania, Smitesh
Committee Member 1
Haas, Francis M.
Committee Member 2
Xue, Wei
Keywords
catalytic combustion, microcombustion, microreactor, nanocatalytic, nanoparticle, thermoelectric
Subject(s)
Energy conversion; Thermoelectric materials
Disciplines
Heat Transfer, Combustion | Mechanical Engineering
Abstract
This work aimed to create a first-generation power device for eventual application to portable electronics. A platinum nanoparticle catalytic substrate was employed in a microcombustion-thermoelectric coupled (MTC) device for the purpose of chemical-to-electrical energy conversion. Multiple microcombustion reactors were designed, fabricated, and investigated. Most importantly, the reactor configuration was designed to accommodate thermoelectric generators (TEGs) for power production. Temperature studies with catalytic combustion of methanol-air fuel mixtures were used to evaluate the thermal power generation performance of each reactor. The final reactor design enabled ignition at room temperature with the ability to achieve repeat catalytic cycles upon subsequent exposure to methanol-air mixtures.
Preliminary performance studies achieved a maximum temperature difference T of 58 degrees C with a fuel mixture flow rate of 800 mL/min. While the temperature difference indicates a respectable potential for power generation, the importance of thermal design was a key finding of this work. It was thought that improved thermal management could make better use of thermal energy lost in the exhaust stream, potentially increasing reactor surface temperatures and corresponding thermoelectric generator parameter T. Thermal design changes would significantly enhance the performance of a later generation of this device, detailed at the close of this thesis.
Recommended Citation
McNally, Dylan Moore, "Exploring a platinum nanocatalytic microcombustion-thermoelectric coupled device" (2020). Theses and Dissertations. 2853.
https://rdw.rowan.edu/etd/2853